Lipschitz-continuous local isometric immersions: rigid maps and origami
نویسندگان
چکیده
A rigid map u : Ω ⊂ R → R is a Lipschitz-continuous map with the property that at every x ∈ Ω where u is differentiable then its gradient Du(x) is an orthogonal m × n matrix. If Ω is convex, then u is globally a short map, in the sense that |u(x) − u(y)| ≤ |x − y| for every x, y ∈ Ω; while locally, around any point of continuity of the gradient, u is an isometry. Our motivation to introduce Lipschitz-continuous local isometric immersions (versus maps of class C) is based on the possibility of solving Dirichlet problems; i.e., we can impose boundary conditions. We also propose an approach to the analytical theory of origami, the ancient Japanese art of paper folding. An origami is a piecewise C rigid map u : Ω ⊂ R → R (plus a condition which exclude self intersections). If u (Ω) ⊂ R we say that u is a flat origami. In this case (and in general when m = n) we are able to describe the singular set Σu of the gradient Du of a piecewise C rigid map: it turns out to be the boundary of the union of convex disjoint polyhedra, and some facet and edge conditions (Kawasaki condition) are satisfied. We show that these necessary conditions are also sufficient to recover a given singular set; i.e., we prove that every polyhedral set Σ which satisfies the Kawasaki condition is in fact the singular set Σu of a map u, which is uniquely determined once we fix the value u(x0) ∈ R and the gradient Du(x0) ∈ O(n) at a single point x0 ∈ Ω\Σ. We use this characterization to solve a class of Dirichlet problems associated to some partial differential systems of implicit type.
منابع مشابه
Extending Lipschitz Maps into C ( K ) - Spaces
We show that if K is a compact metric space then C(K) is a 2-absolute Lipschitz retract. We then study the best Lipschitz extension constants for maps into C(K) from a given metric space M , extending recent results of Lancien and Randrianantoanina. They showed that a finitedimensional normed space which is polyhedral has the isometric extension property for C(K)-spaces; here we show that the s...
متن کاملA Loop Group Formulation for Constant Curvature Submanifolds of Pseudo-euclidean Space
We give a loop group formulation for the problem of isometric immersions with flat normal bundle of a simply connected pseudo-Riemannian manifold M c,r, of dimension m, constant sectional curvature c 6= 0, and signature r, into the pseudo-Euclidean space R s , of signature s ≥ r. In fact these immersions are obtained canonically from the loop group maps corresponding to isometric immersions of ...
متن کاملA note on regularity and rigidity of co-dimension 1 Sobolev isometric immersions
We prove the C regularity and developability of W 2,m Sobolev isometric immersions of m-dimensional domains into R. A corollary is the strong density of smooth mappings in this class when the domain is convex. We also prove that any W -isometric immersion of S inside S is a rigid motion.
متن کاملAn Existence Theorem for G-structure Preserving Affine Immersions
We prove an existence result for local and global G-structure preserving affine immersions between affine manifolds. Several examples are discussed in the context of Riemannian and semi-Riemannian geometry, including the case of isometric immersions into Lie groups endowed with a left-invariant metric, and the case of isometric immersions into products of space forms.
متن کاملCurved Flats, Pluriharmonic Maps and Constant Curvature Immersions into Pseudo-riemannian Space Forms
We study two aspects of the loop group formulation for isometric immersions with flat normal bundle of space forms. The first aspect is to examine the loop group maps along different ranges of the loop parameter. This leads to various equivalences between global isometric immersion problems among different space forms and pseudoRiemannian space forms. As a corollary, we obtain a non-immersibili...
متن کامل